
Model Extraction for
Sockets-based Distributed Programs

Alexander Heußner

LaBRI, Université Bordeaux – France
ANR AVeriSS

Abstract. The following short report introduces an approach to utilize
unbounded, reliable fifo queues as basis for an operational semantics of
distributed applications whose implementation is based on the Berke-
ley Sockets Api. After a sketch of Tcp and the Sockets Api, a first
draft of a formalization of distributed programs is given as well as a
straight-forward translation into the abstract formal model of queueing
concurrent processes.

1 Introduction

Distributed programs that communicate by point-to-point connections over a
Tcp/Ip-based network architecture are an important and ubiquitous class of
applications whose complexity demands for automatic verification tools to guar-
antee the communication protocol’s correctness. A secure protocol demands a
safe transportation of messages, and, hence, most often relies on an underlying
layer of Tcp whereas the interprocess communication is implemented with the
help of the Berkeley Sockets Api (or “Sockets” for short). Standard examples
for these kind of distributed programs are Internet clients and servers, as well as
peer-to-peer and Grid computing applications. Classical verification questions
are, for example, safety, boundedness, and deadlock freeness [Hol91]. Special
attention has to be paid to partial verification or verification with respect to
a given protocol specification, as the communicating programs are developed
apart and independently, viz. the gargantuan number of Ftp clients and servers
which – in practice – should work flawlessly together.

The Berkeley Sockets Api [BSD83] became the de facto standard for appli-
cations that communicate via Internet sockets, and most present-day operating
systems contain an implementation of this Api (e.g., WinSock on the Windows
platform, or as part of the glibc on Gnu/Linux). Even though originally imple-
mented in and for C, almost all modern socket Apis in other programming lan-
guages follow its interface structure. In general, Sockets supports a wide variety
of different protocol families. In this short report, we will restrict our discussion
to the transmission control protocol (Tcp).

For example, Internet servers focus reliability and safety, which requires com-
plex control structures and additional code that assures the proper behavior in
(almost) all execution contexts (including also rather unlikely conditions). The

automatic verification of legacy code cannot rely on building formal abstract
models by hand from the source code as this would be a tedious task regarding
the shear size and complexity of a typical server program. Hence, verification
requires a technique for model extraction. An obvious demand for the formal
model derived from code is the retransfer of the results of formal verification
on this model to the original program. This depends on proving the underly-
ing translation to be “semantically equivalent”, e.g., a (bi-)simulation, or an
over-/under-approximation with respect to the property to verify.

An additional problem with Sockets is the missing formal semantics: the be-
havior of Api calls is fixed – at least to our knowledge – only by informal, natural
language documents like [Ste04] as well as by its implementations on different
platforms which differ significantly (see [Ste04] for details). Consequently, justi-
fying a model extraction method would additionally demand a formally complete
and correct rigorous semantics for Sockets.

Our Contribution

We present a semi-formalization of distributed programs whose communication
is implemented via calls to the Tcp part of Sockets (under certain additional
background restrictions). We propose queueing concurrent processes (Qcp) as
formal model to extract the basic features of distributed programs. Qcp con-
sists of local automata models (finite automata, counter automata, pushdown
automata, etc.) that communicate via reliable, a priori unbounded, point-to-
point fifo channels. We conclude by a discussion why these kind of fifo channels
are semantically appropriate albeit our background restrictions.

Related Work

A Sockets semantics based on bounded fifo channels and thereupon the applica-
tion of the Spin model checker for verification of Sockets based applications was
presented in [CMGMS05]. This publication proposes a formal semantics for Sock-
ets, before it shows the translation to Promela. This approach presents only
the Sockets Api calls symbolically, whereas to surrounding code is simulated by
Spin’s feature to inline C code directly (which poses a problem regarding the
symbolic properties one can verify against).

The previous discussion originated from a more general approach to utilize
Spin for the verification of event driven distributive reactive systems [HS02], for
example, to verify the alternating bit protocol.

A model for (unicast) Udp Sockets based, distributed programs that includes
the handling of Icmp error messages was presented in [WNSS02]; the latter also
introduces a formal semantic model of Sockets, and relies on the Hol theorem
prover for programs written in a subset of OCaml. A general comparison of
different angles to attack Sockets’ semantic vagueness is presented in [BFN+05].

2

2 TCP

The transmission control protocol (Tcp) [RFC793] is the original, and nowa-
days omnipresent transport layer protocol of the Internet protocol suite Tcp/Ip
[Ste95]. Tcp is connection oriented, (per default) full-duplex, stateful (i.e., a
connection is closed, half-open, open, half-closed, closed), and assures the reli-
able transmission of information. A connection binds two different Tcp-sockets
which both are given by an Ip-number (32 bit unsigned) and a Tcp-port num-
ber (16 bit unsigned). The operating system assigns sockets to running processes
dynamically such that at each time each socket is bound to no more than one
process. We will call the two processes linked by a connection peers.

Let a message be the atomic unit of transferred data, e.g., a letter over a
finite alphabet. Note that Tcp does not transfer messages but (finite) streams of
packages; Tcp collects certain smaller message to one package (i.e., Tcp’s atomic
unit of transmission) or divides larger messages into smaller ones depending on
the byte-encoding of messages. Nevertheless, Tcp assures that a sequence of
messages sent by one of the two peers will be received in the same order and
without transmission error by the other. Hence, an application based on Tcp
does not need to assure the integrity of the sent data itself (in contrast to Udp
based programs which also need to handle Icmp error messages).

An integral part of Tcp is the sliding window protocol that determines the
maximal number of packages currently in transit. Again, this is negotiated when
a connection is established; the maximal size of data currently in transit is 216−1
(in bytes) in the standard case or 230− 1 when considering Tcp window scaling
[RFC1323] (which is enabled per default in most modern operating systems).
Note that the latter amounts to 1GB of data currently on its way on the net-
work, and that this 1GB can be only one continuous message or a gargantuan
number of one bit messages. Nevertheless, the actual window size is dynamically
adapted by the protocol itself to current network conditions (which depend on
all participating nodes and routers in the network). Consequently, we need con-
sider alternative models for this non-deterministic behavior: one can either over-
approximate the window size by the maximal number of messages in transit at
the same moment, or assume the window to be of “unbounded” size. We prefer
the latter as it includes non-deterministically all possible window sizes, even if
we possibly deal with window sizes that are in practice impossible (with respect
to [RFC1323]).

Besides these standard behavior, Tcp includes numerous advanced features
which need to be introduced here, as server programs tend to take any advantage
possible to gain a better performance and higher reliability. Two important fea-
tures are the direct access to its input and output buffer as well as out-of-band
data. Each peer assigned to a socket has an input and an output buffer, these
are bounded (fifo) buffers whereas the size is fixed when establishing the connec-
tion (there is a maximal size as an operating system variable); nevertheless, each
peer can deliberately change unsent data in the output buffer (which is rarely
done), or can peek ahead in the input buffer. All the messages that are currently
transferred by the network can be seen as being stored in an unbounded fifo

3

buffer which results in Figure 2. Out-of-band data transmission allows to trans-
fer a signal from one peer to the other “quickly” and independent of all the
other data currently in transfer. Most Tcp implementations do not establish
an extra connection but tag Tcp messages by an “urgent” flag while sending,
such that it will be delivered immediately to the receiving peer and not enter
the input buffer. With respect to a Tcp-based application, “urgent” messages
can be seen as an additional buffer of size 1 in each direction that can be read
asynchronously; hence, an out-of-band signal as demanded by the Socket Api.

Fig. 1. Message Buffer Representation for Tcp

3 Berkeley Sockets

As with different implementations of Tcp, there are different “interpretations”
of Sockets. To avoid confusion, we will restrict ourselves to Sockets for the In-
ternet protocol suite and therein Tcp. Further, we assume Sockets to work in
blocking mode, i.e., that sending or receiving messages are atomic actions; this
is the “standard” behavior available in all Sockets implementations. Note that
Sockets’ underlying programming paradigm makes a difference between clients
and servers even if this seems strange for nowadays peer-to-peer applications.

command (natural language) semantics

socket create a (local) socket of a type, e.g., a Tcp socket
bind bind local socket to Ip-address and Tcp port
listen set underlying socket to listen mode (server)
connect connect to remote socket (client, binding local socket implicit)
accept accepts an incoming connection (server)
read, write read, write from/to socket
close remove socket

Table 1. Basic Sockets Api Calls

Sockets includes different types of Api calls for different classes of tasks: (i)
establish and maintain a connection, (ii) send and receive messages, (iii) auxil-
iary methods to adapt to the local machine (e.g., converting endianness of Ip
addresses). Table 1 gives a natural language semantics of these calls; Figure 2

4

1 #include <socket.h>
2 /∗ overjump some lines ... ∗/

4 int main(int argc, char ∗argv){
5 int sockfd, n;
6 char recvline[MAXLINE+1];
7 struct sockaddr in servaddr; /∗ contains address data ∗/

9 if ((sockfd = socket(AF INET, SOCK STREAM), 0))<0)
10 err sys (”socket error”);
11 bzero(&servaddr, sizeof(servaddr));
12 servadr. sin family = AF INET;
13 servaddr.sin port = htons(22);
14 servaddr.sin addr.s addr = inet aton(”12.110.110.204”)

16 if (connect(sockfd, (SA∗) &serveraddr, sizeof(servaddr))<0)
17 err sys (”connect error”)

19 /∗ we will only read ... ∗/
20 while ((n=read(sockfd, recvline, MAXLINE)) >0){
21 recvline [n]=0;
22 if (fputs(recvline ,stdout) == EOF)
23 err sys (”fputs error”);
24 }
25 if (n < 0)
26 error sys (”read error”);
27 exit(0);
28 }

Simple Server in C Socket Functions of Elementary TCP
Client-Server

Fig. 2. Socket Examples from [Ste04]

presents their practical usage in a simple server program and their interplay as
sequence diagram.

4 Distributed Programs

Servers in the wild heavily rely on advanced features of Sockets and Tcp (like
out-of-band data), multi-threading techniques that allow to fork a sub-thread
(or even another process) that takes over the current Tcp-connection, pre-
forking/-threading to avoid forking for every incoming connection, as well as
asynchronous synchronization with the operating system (e.g., for reading/writ-
ing a file).

To simplify our presentation, we assume that peers are given by monolithic
programs (single thread processes) with a formal (operational) semantics for
all non-Sockets parts of the code. Further, we ignore the physical location of
a program, as it is located by the sockets it uses. Since we regard Sockets for
interprocess communication only, we can rule out self-loops, i.e., programs that
directly communicate to itself. As before, we assume Socket calls to be blocking
and leave aside out-of-band data. W.l.o.g., we assume the messages exchanged on
connections to be over a finite alphabet. Note that the underlying Tcp assures
that messages exchanged by Sockets Api calls are handled fifo and without loss
or transportation error.

Let a socket be a pair of Ip-number and Tcp-port, i.e., two unsigned numbers
of 32 and 16 bits each (for Internet Protocol version 4). A socket is local to a
program if the program binds this socket (explicitly by bind or implicitly by
connect).

5

Definition 4.1. A distributed program is a tuple DP = 〈P, sock〉 with P a set
of monolithic (local) programs. The injective function sock maps a program in P
to a subset of pairs of sockets (ς1, ς2) such that ς1 is a local socket with respect
to this program.

Note that sock maps a program to all its outgoing/incoming connections
which are given as socket pairs. This may require a full unfolding of the program.
As connections are per default full-duplex there is no distinction between sockets
that are used to either send or receive only.

Nevertheless, there are some artifacts introduced by the translation from
(unformalized) Sockets to DP. The mapping sock between processes and sockets
is static, hence, cannot express the dynamic (re-)usage of sockets possible with
Tcp. Nevertheless, we can assume that our translation includes this aspects by
bookkeeping different connections between the same sockets in time.

Further, we assume that each program in P has – a priori – an operational
semantics with respect to all commands not in Sockets. We assert that this
semantics is given as labeled transition system (Lts) wherein we treat Sockets
actions as nop. This allows to use well-known techniques of model extraction,
e.g., tools based on predicate abstraction or path-slicing like FeaVer [Hol00], abC
[DHH02], Bandera [CDH+00], or JavaPathFinder[VHB+03].

5 Queueing Concurrent Processes

A communication architecture T (or architecture for short) is a pair 〈P,Ch〉 with
a finite non-empty set P of processes and a finite set of point-to-point channels
Ch ⊆ (P × P) \ idP .

Definition 5.1. A system of queueing concurrent processes (Qcp) over a given
architecture T = 〈P,Ch〉 is a tuple A = 〈(Sp)p∈P ,M, (Σp)p∈P , (∆p)p∈P , (s0p)p∈P〉
with M a finite message alphabet. For each process p ∈ P, the tuple 〈Sp, Σp, ∆p, s

0
p〉

describes a (local) transition system on the states Sp over the actions Σp =
Σloc

p ·∪Σcom
p which are either local, i.e., in Σloc

p , or communication actions in
Σcom

p = {p!q(m) | (p, q) ∈ Ch and m ∈M} ∪ {p?q(m) | (q, p) ∈ Ch and m ∈M}.
Local transitions are given by the rules in ∆p ⊆ Sp × Σp × Sp, and the initial
state of process p is s0p.

As usual, p!q(m) denotes the send of message m from process p to process q,
whereas q?p(m) denotes the matching receive on process q.

Note also that the Sp need not necessarily be finite. If all Sp are finite, we will
call A a finite Qcp. The local transition systems given by 〈Sp, Σp, ∆p, s

0
p〉 could

be, for example, finite automata, counter automata (including Petri nets), or
pushdown automata. As usual, we define the semantics of A as labeled infinite-
state transition system:

Definition 5.2. A Qcp A represents an LTS JAK = 〈C,Σ,→, c0〉 with config-
urations C = S × (M∗)Ch and the initial configuration c0 =

(
s0, (ε, . . . , ε)

)
, i.e.,

all channels are initially empty. We write a configuration as c = 〈s,w〉 where

6

s = (sp)p∈P is the global state and w = (wp,q)(p,q)∈Ch are the channel contents.
Further, for any p ∈ P and a ∈ Σ, 〈s,w〉 a−→〈s′,w′〉 is a transition in C×Σ×C
if (sp, a, s

′
p) ∈ ∆p and the following holds:

(i) sq = s′q for all q 6= p,
(ii) if a ∈ Σloc

p then w = w′,
(iii) if a ∈ Σcom

p with a = p!q(m) then w′p,q = wp,qm and w′s,t = ws,t

for (s, t) ∈ Ch\{(p, q)},
(iv) if a ∈ Σcom

p with a = p?q(m) then wq,p = mw′q,p and w′s,t = ws,t

for (s, t) ∈ Ch\{(q, p)}.

Note that the rules regarding Σcom force a fifo semantics on the channels.

6 Formal Matching

We translate a given a distributed program DP = 〈P, sock〉 to a Qcp A =
〈(Sp)p∈P ,M, (Σp)p∈P , (∆p)p∈P , (s0p)p∈P〉 over an architecture T = 〈P,Ch〉 as
follows:

– each program in P is mapped one-to-one to a process in P
– (p, p′) ∈ Ch iff

there exist two sockets ς, ς ′ such that (ς, ς ′) ∈ sock(p) and (ς ′, ς) ∈ sock(p′).
– the local transition system 〈Sp, Σp, ∆p, s

0
p〉 is an “adequate” semantic model

for the program mapped to process p (when treating all actions in Σcom as
local nop)

– M is the finite alphabet of messages exchanged in DP
– a write action of a message m on a connection (ς, ς ′) is mapped to p!q(m)

with (ς, ς ′) ∈ sock(p) and (ς ′, ς) ∈ sock(q)
– analogously, the matching reception of message m is mapped to q?p(m)

Note that each connection in DP is mapped to a pair of channels with dif-
ferent directions in Ch. Hence, Qcp models of DP are inevitably cyclic.

As discussed in Section 2, reliable and unbounded fifo channels seem a natural
choice to model connections in distributed programs. Reliability is guaranteed
by Tcp and the assumption of unbounded channels avoids any occupation with
the dynamic change of sliding window sizes.

Conclusions

The previous short report shows a possible way to use a fifo semantics for Berke-
ley Sockets based distributed applications. This further allows to use Qcp as
abstract model and verification methods based thereupon.

For future implementations, a more detailed semantic discussion of DP and
its mapping to Qcp is unavoidable. Further, one should try to reduce the implicit
and explicit assumptions and restrictions included by our modeling and to extend
the model to include the dynamic behavior of Tcp as well as specialties like out-
of-bound data.

7

References

[BFN+05] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell,
Michael Smith, and Keith Wansbrough. Rigorous specification and con-
formance testing techniques for network protocols, as applied to tcp,
udp, and sockets. In Roch Guérin, Ramesh Govindan, and Greg Min-
shall, editors, SIGCOMM, pages 265–276. ACM, 2005.

[BSD83] 4.2BSD, 1983.
[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,

Corina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting
finite-state models from java source code. In ICSE, pages 439–448, 2000.

[DHH02] Dennis Dams, William Hesse, and Gerard J. Holzmann. Abstracting c
with abc. In Proc. of CAV 2002, pages 515–520, 2002. Springer.

[CMGMS05] Pedro de la Cámara, Maŕıa del Mar Gallardo, Pedro Merino, and David
Sanan. Model Checking Software with Well-Defined APIs: the Socket
Case. In Proc. of FMICS 2005, pages 17–26, 2005. ACM.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[Hol00] G. J. Holzmann. Automating software feature verification. Bell Labs
Technical Journal, 5(1):35–45, March 2000.

[HS02] G.J. Holzmann and M.H. Smith. An automated verification method for
distributed systems software based on model extraction. IEEE Trans-
actions on Software Engineering, 28(4):364–377, 2002.

[RFC793] Transmission Control Protocol. RFC 793 (Informational), 1981.
[RFC1323] TCP Extensions for High Performance. RFC 1323 (Informational), 1992.
[Ste95] W. Richard Stevens. TCP/IP Illustrated, Volume 1; The Protocols. Ad-

dison Wesley, Reading, 1995.
[Ste04] W. Richard Stevens. UNIX Network Programming Vol 1: Networking

APIs – The Sockets Networking API, volume 1 of 3. Prentice Hall, third
edition, 2004.

[VHB+03] W. Visser, K. Havelund, B. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engineering Journal, 10(2), 2003.

[WNSS02] Keith Wansbrough, Michael Norrish, Peter Sewell, and Andrei Ser-
jantov. Timing udp: Mechanized semantics for sockets, threads, and
failures. In Le Métayer, editor, Proc. of ESOP 2002, pages 278–294.
Springer, 2002.

8

